258 research outputs found

    Cerebrospinal Fluid Tau, p-Tau 181 and Amyloid-beta(38/40/42) in Frontotemporal Dementias and Primary Progressive Aphasias

    Get PDF
    Background/Aims: We determined cerebrospinal fluid (CSF) concentrations of amyloid-beta(A beta)(1-38), A beta(1-40), A beta(1-42), total tau and phospho-tau (p-tau) in order to study their differential expression in frontotemporal dementia (FTD, n = 25) and primary progressive aphasia (PPA, n = 12) as compared to Alzheimer's dementia (AD, n = 25) and nondemented controls (n = 20). Methods: Commercially available ELISA and electrochemiluminescence methods were applied. Results: High CSF p-tau and low ratios of A beta(1-42)/A beta(1-40) and A beta(1-42)/A beta(1-38), respectively, were specific for AD. CSF A beta(1-38) was reduced in FTD as compared to each of the other diagnostic groups, including PPA. CSF tau and p-tau levels were elevated in PPA as compared to FTD. Conclusion: This is the first detailed report on biomarker patterns in PPA, indicating distinct CSF biomarker patterns in FTD and PPA as major subgroups of frontotemporal lobar degeneration. The diagnostic and pathophysiological implications of our results warrant further studies on larger and neuropathologically diagnosed patient populations. Copyright (C) 2010 S. Karger AG, Base

    Combined Analysis of CSF Tau, Aβ42, Aβ1–42% and Aβ1–40ox% in Alzheimer's Disease, Dementia with Lewy Bodies and Parkinson's Disease Dementia

    Get PDF
    We studied the diagnostic value of CSF Aβ42/tau versus low Aβ1–42% and high Aβ1–40ox% levels for differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), respectively. CSF of 45 patients with AD, 15 with DLB, 21 with Parkinson's disease dementia (PDD), and 40 nondemented disease controls (NDC) was analyzed by Aβ-SDS-PAGE/immunoblot and ELISAs (Aβ42 and tau). Aβ42/tau lacked specificity in discriminating AD from DLB and PDD. Best discriminating biomarkers were Aβ1–42% and Aβ1–40ox% for AD and DLB, respectively. AD and DLB could be differentiated by both Aβ1–42% and Aβ1–40ox% with an accuracy of 80% at minimum. Thus, we consider Aβ1–42% and Aβ1–40ox% to be useful biomarkers for AD and DLB, respectively. We propose further studies on the integration of Aβ1–42% and Aβ1–40ox% into conventional assay formats. Moreover, future studies should investigate the combination of Aβ1–40ox% and CSF alpha-synuclein for the diagnosis of DLB

    Potential sources of interference with the highly sensitive detection and quantification of alpha‐synuclein seeds by qRT‐QuIC

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disease which is histologically characterized by loss of dopaminergic neurons in the substantia nigra and deposition of aggregated alpha‐synuclein (aSyn) in the brain. The detection of aSyn in well accessible fluids has been one of the central approaches in the development of biomarkers for PD. Recently, real‐time quaking‐induced conversion (RT‐QuIC) has been successfully adapted for use with aSyn seeds. Here, we systematically analysed parameters potentially impacting the reliability of this assay by using quantitative real‐time quaking‐induced conversion (qRT‐QuIC) with in vitro‐formed aSyn seeds. Seeds diluted in cerebrospinal fluid (CSF) accelerated the seeding reaction and slightly increased the sensitivity without affecting specificity. Repeated freeze–thaw cycles decreased the apparent lag times of seeds diluted in ddH2O but did not alter the seeding activity of seeds diluted in CSF. High levels of artificial contamination with blood resulted in prolonged apparent lag times, while sensitivity and specificity were unaffected. Altogether, qRT‐QuIC with aSyn seems to be robust concerning sensitivity and specificity in our model system, but quantitative interpretation might be limited under certain conditions

    Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies

    Get PDF
    Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel

    Follow-up investigations of tau protein and S-100B levels in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease

    Get PDF
    Background: S-100B and tau protein have a high differential diagnostic potential for the diagnosis of Creutzfeldt-Jakob disease (CJD). So far there has been only limited information available about the dynamics of these parameters in the cerebrospinal fluid (CSF). However, there is a special interest in finding biochemical markers to monitor disease progression for differential diagnosis and treatment. Patients and Methods: We analyzed CSF of 45 patients with CJD and of 45 patients with other neurological diseases for tau protein and S-100B in a follow-up setting. All diagnoses of CJD were later neuropathologically verified. A ratio between tau protein differences and the time between lumbar puncture was calculated. The same was done for S-100B. Results: Tau protein levels of 34 cases were above the cut-off level for CJD (>1,300 pg/ml) in the first CSF sample. In 7 of 11 patients with lower tau levels in the first CSF sample, tau levels rose. The above-mentioned ratio was significantly higher in the CJD group than in the group with other neurological diseases. Similar results were obtained for S-100B. Conclusion: We conclude that follow-up investigations and calculation of ratios is a useful tool in the differential diagnosis of CJD. Variations in this pattern were observed in single cases. Copyright (C) 2005 S. Karger AG, Basel

    Proteomic analysis of the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease

    Get PDF
    So far, only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) has been accepted as diagnostic criterion for Creutzfeldt-Jakob disease (CJD). However, this assay cannot be used for screening because of the high rate of false-positive results, whereas patients with variant CJD are often negative for 14-3-3 proteins. The aim of this study was to compare the spot patterns of CSF by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to search for a CJD-specific spot pattern. We analyzed the CSF of 28 patients {[}11 CJD, 9 Alzheimer's disease ( AD), 8 nondemented controls (NDC)] employing 2D-PAGE which was optimized for minimal volumes of CSF (0.1 ml; 7-cm strips). All samples were run at least three times, gels were silver stained and analyzed by an analysis software and manually revised. We could consistently match 268 spots which were then compared between all groups. By the use of 5 spots, we were able to differentiate CJD from AD or NDC with a sensitivity of 100%. CJD could also be distinguished from both groups by using a heuristic clustering algorithm of 2 spots. We conclude that this proteomic approach can differentiate CJD from other diseases and may serve as a model for other neurodegenerative diseases. Copyright (C) 2007 S. Karger AG, Basel

    Validation of conversion between Mini-Mental State Examination and Montreal Cognitive Assessment

    Get PDF
    Introduction: Harmonizing data across cohorts is important for validating findings or combining data in meta‐analyses. We replicate and validate a previous conversion of MoCA to MMSE in PD. Methods: We used five studies with 1,161 PD individuals and 2,091 observations measured with both the MoCA and MMSE. We compared a previously published conversion table using equipercentile equating with log‐linear smoothing to our internally derived scores. Results: Both conversions found good agreement within and across the studies when comparing true and converted MMSE (mean difference: 0.05; standard deviation: 1.84; median difference: 0; interquartile range: –1 to 1, using internal conversion). Conclusions: These results show that one can get a reliable and valid conversion between two commonly used measures of cognition in PD studies. These approaches need to be applied to other scales and domains to enable large‐scale collaborative analyses across multiple PD cohorts. © 2016 International Parkinson and Movement Disorder Society </p

    Decrease in Aβ42 predicts dopa-resistant gait progression in early Parkinson disease

    Get PDF
    Objective: This prospective observational study investigates the role of CSF biomarkers in predicting progression of dopa-resistant gait impairments in Parkinson disease (PD) in the first 36 months from diagnosis. Methods: Quantitative gait analysis was carried out longitudinally using an instrumented walkway (GAITRite) in 108 people with PD and 130 age-matched controls. A subgroup of 44 people with PD underwent lumbar puncture from which a battery of CSF biomarkers was measured: β-amyloid 1-42 and 1-40 (Aβ42 and Aβ40), total and phosphorylated tau protein (t-tau/p-tau181), and α-synuclein (αSyn). Linear mixed models examined the association between CSF and dopa-resistant gait characteristics (defined as substantial progression despite optimal medication). Results: Low baseline CSF Aβ42, and to a lesser extend Aβ40, predicted decline in gait characteristics in the first 3 years following diagnosis, independently explaining up to 12% of progression of step time variability (single task) and step length variability (dual-task). Interestingly, these findings were independent of age and cognition. Conclusions: These findings implicate underlying amyloid pathology in neural networks involved in locomotor control. Results suggest that disturbed Aβ metabolism may be a biomarker for dopa-resistant gait impairments in early PD. Our findings raise interesting questions regarding therapeutic interventions such as compounds or molecules aimed at reducing amyloid burden to mitigate gait disturbance in early PD and potentially falls risk. Finally, progression of discrete gait characteristics suggests they may have potential as clinical biomarkers of pathology and disease progression

    Tau protein, A beta 42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies

    Get PDF
    The intra vitam diagnosis of dementia with Lewy bodies (DLB) is still based on clinical grounds. So far no technical investigations have been available to support this diagnosis. As for tau protein and beta-amyloid((1-42)) (Abeta42), promising results for the diagnosis of Alzheimer's disease ( AD) have been reported; we evaluated these markers and S-100B protein in cerebrospinal fluid (CSF), using a set of commercially available assays, of 71 patients with DLB, 67 patients with AD and 41 nondemented controls (NDC) for their differential diagnostic relevance. Patients with DLB showed significantly lower tau protein values compared to AD but with a high overlap of values. More prominent differences were observed in the comparison of DLB patients with all three clinical core features and AD patients. Abeta42 levels were decreased in the DLB and AD groups versus NDC, without significant subgroup differences. S-100B levels were not significantly different between the groups. Tau protein levels in CSF may contribute to the clinical distinction between DLB and AD, but the value of the markers is still limited especially due to mixed pathology. We conclude that more specific markers have to be established for the differentiation of these diseases. Copyright (C) 2005 S. Karger AG, Basel
    corecore